Using artificial neural networks to predict and control biological neurons


“Once each neuron has an assignment, the model allows you to make predictions about that neuron,” DiCarlo says.

The researchers then set out to see if they could use those predictions to control the activity of individual neurons in the visual cortex. The first type of control, which they called “stretching,” involves showing an image that will drive the activity of a specific neuron far beyond the activity usually elicited by “natural” images similar to those used to train the neural networks.

The researchers found that when they showed animals these “synthetic” images, which are created by the models and do not resemble natural objects, the target neurons did respond as expected. On average, the neurons showed about 40 percent more activity in response to these images than when they were shown natural images like those used to train the model. This kind of control has never been reported before.

“That they succeeded in doing this is really amazing. It’s as if, for that neuron at least, its ideal image suddenly leaped into focus. The neuron was suddenly presented with the stimulus it had always been searching for,” says Aaron Batista, an associate professor of bioengineering at the University of Pittsburgh, who was not involved in the study. “This is a remarkable idea, and to pull it off is quite a feat. It is perhaps the strongest validation so far of the use of artificial neural networks to understand real neural networks.”

In a similar set of experiments, the researchers attempted to generate images that would drive one neuron maximally while also keeping the activity in nearby neurons very low, a more difficult task. For most of the neurons they tested, the researchers were able to enhance the activity of the target neuron with little increase in the surrounding neurons.